|
|
8 H: C" _( I. m8 W1 K
前面跟大家简单的介绍了下关于曲轴的相关内容,那么曲轴的工作情况十分复杂,它是在周期性变化的燃气作用力、往复运动和旋转运动惯性力及其他力矩作用下工作的,因而承受着扭转和弯曲的复杂应力。曲轴也属于机械零件的一部分,也是需要建立相关三维模型的,如果有需要可以看下三维模型库的相关模型,下面就来了解下曲轴的疲劳损坏形式。
2 F2 ?1 A" W: Y+ t- O2 \% M* c 曲轴箱主轴承的不同心度会影响到曲轴的受力状况,其次,由于曲轴弯曲与扭转振动而产生的附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重的应力集中。最后曲轴主轴颈与曲柄销是在比压下进行高速转动,因而产生强烈的磨损。因此柴油机在运转中发生曲轴裂纹和断裂事故不为鲜见,尤其是发电柴油机曲轴疲劳破坏较多。依曲轴产生裂纹的交变应力的性质不同,主要有以下三种疲劳裂纹:弯曲疲劳裂纹、扭转疲劳裂纹和弯曲一扭转疲劳裂纹。
; ~) O* y: j; }7 [+ a0 L4 q 曲轴的弯曲疲劳裂纹一般发生在主轴颈或曲柄销颈与曲柄臂连接的过渡圆角处,或逐渐扩展成横断曲柄臂的裂纹,或形成垂直轴线的裂纹。弯曲疲劳试验表明,过渡圆角处的最大应力出现在曲柄臂中心对称线下方。应力沿曲轴长度方向的分布是在中间的和端部的曲柄有较大的弯曲应力峰值。因此,曲轴弯曲疲劳裂纹常发生在曲轴的中间或两端的曲柄上。
% Q' [1 Y* f7 d$ A; C 曲轴弯曲疲劳破坏通常是在柴油机经过较长时间运转之后发生。因为长时间运转后柴油机的各道主轴承磨损不均匀,使曲轴轴线弯曲变形,曲轴回转时产生过大的附加交变弯曲应力。此外,曲轴的曲柄臂、曲柄箱或轴承支座(机座)等的刚性不足,柴油机短时间运转后,也会使曲轴产生弯曲疲劳破坏。
: o6 L' r9 ^/ k1 u2 i 曲轴在扭转力矩作用下产生交变的扭转应力,存在扭振时还会产生附加交变扭转应力,严重时会引起曲轴的扭转疲劳破坏。扭转疲劳裂纹一般发生在曲轴上应力集中严重的油孔或过渡圆角处,并在轴颈上沿着与轴线成45°角的两个方向扩展。这是因为轴颈的抗扭截面模数较曲柄臂的小,所以扭转疲劳裂纹多自过渡圆角向轴颈扩展,而很少向曲柄臂扩展。但若同时存在较强的弯曲应力,则裂纹也可自圆角向曲柄臂扩展,造成曲柄臂弯曲断裂。
7 B$ r& I* o, t) g( k9 x1 i 曲轴的疲劳破坏还可能是由于弯曲与扭转共同作用造成。常常由于主轴承不均匀磨损造成曲轴上产生弯曲疲劳裂纹,继而在弯曲与扭转的共同作用下使裂纹扩展、断裂,最后断裂面与轴线成45°角。断面上自疲劳源起约2/3的面积为贝纹区,呈暗褐色;剩余l/3的面积为最后断裂区,断面凹凸不平,晶粒明亮。圆形波纹状纹理是弯曲疲劳造成的,放射状纹理是扭转疲劳造成的,两种纹理交织成蛛网状。弯曲一扭转疲劳裂纹有时也呈以弯曲疲劳为主或以扭转疲劳为主的破坏形式。9 m' F O |* b* y
生产中,曲轴的弯曲疲劳破坏远远多于钮转疲劳破坏。其主要原因是由于曲轴弯曲应力集中系数大于扭转应力集中系数,曲轴的弯曲应力难于精确计算和控制。柴油机运转中,曲轴的各道主轴承磨损是很难掌握和计算的,由它所引起的曲轴变形和附加弯曲应力也就难于讨算和控制了。相反,曲轴的扭转应力可以通过计算准确掌握,并可采取有效的减振措施予以平衡,只要避免柴油机在临界转速运转和扭转应力过载,曲轴的扭转疲劳破坏就会得以控制。$ t* Y% z6 X; H/ X& ~, d& n* C
现在各位都应该对以上的三种曲轴的疲劳损坏形式有所了解了吧,如果有需要也可以关注更多这方面的内容,如果对模型有兴趣可以看下三维模型库3dsource.cn/manufacturing/3dmould.html的相关内容,希望可以对各位的设计有所提示! |
|